EP Physics/Chemistry

Printables:
Levels 5-8

This book belongs to:

Cut along the outside lines and
fold in half. Write the name of
the element and information
about the element inside the
booklet.
Glue this side to the correct
periodic table group section.

Cut along the outside lines and
fold in half. Write the name of
the element and information
about the element inside the
booklet.
Glue this side to the correct
periodic table group section.

Cut along the outside lines and
fold in half. Write the name of
the element and information
about the element inside the
booklet.
Glue this side to the correct
periodic table group section.

Cut along the outside lines and
fold in half. Write the name of
the element and information
about the element inside the
booklet.
Glue this side to the correct
periodic table group section.

| Cut along the outside lines and |
| :--- | :--- |
| fold in half. Write the name of |
| the element and information |
| about the element inside the |
| booklet. |

| Cut along the outside lines and |
| :--- | :--- |
| fold in half. Write the name of |
| the element and information |
| about the element inside the |
| booklet. |

Cut along the outside lines and
fold in half. Write the name of
the element and information
about the element inside the
booklet.
Glue this side to the correct
periodic table group section.

| Cut along the outside lines and |
| :--- | :--- |
| fold in half. Write the name of |
| the element and information |
| about the element inside the |
| booklet. |

Cut along the outside lines and
fold in half. Write the name of
the element and information
about the element inside the
booklet.
Glue this side to the correct
periodic table group section.
Cut along the outside lines and
fold in half. Write the name of
the element and information
about the element inside the
booklet.

Glue this side to the correct
periodic table group section.

| Cut along the outside lines and |
| :--- | :--- |
| fold in half. Write the name of |
| the element and information |
| about the element inside the |
| booklet. |
| Glue this side to the correct |
| periodic table group section. |

Cut along the outside lines and
fold in half. Write the name of
the element and information
about the element inside the
booklet.
Glue this side to the correct
periodic table group section.

| Cut along the outside lines and
 fold in half. Write the name of
 the element and information
 about the element inside the
 booklet. |
| :--- | :--- |
| Glue this side to the correct
 periodic table group section. |

Cut along the outside lines and fold in half. Write the name of the element and information about the element inside the booklet.	
Glue this side to the correct periodic table group section.	

Cut along the outside lines and
fold in half. Write the name of
the element and information
about the element inside the
booklet.
Glue this side to the correct periodic table group section.

| Cut along the outside lines and |
| :--- | :--- |
| fold in half. Write the name of |
| the element and information |
| about the element inside the |
| booklet. |
| Glue this side to the correct |
| periodic table group section. |

			O										Me	nt			
Group $\rightarrow 1$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
\downarrow Period																	
$1 \begin{array}{\|l\|l\|} \hline 1 \\ \hline \end{array}$																	2 He
$2 \longdiv { 3 }$	$\begin{array}{\|l\|} \hline 4 \\ \mathrm{Be} \end{array}$											5	$\begin{aligned} & 6 \\ & \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & N \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \\ & \mathrm{~F} \end{aligned}$	10 Ne
311 17 1	$\begin{aligned} & 12 \\ & \hline \mathrm{Mg} \\ & \hline \end{aligned}$											$\begin{array}{\|l\|l\|} \hline 13 \\ \mathrm{Al} \end{array}$	$\begin{aligned} & \hline 14 \\ & \mathrm{Si} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 15 \\ & \hline \mathrm{P} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 16 \\ 5 \end{gathered}$	$\begin{aligned} & \hline 17 \\ & \mathrm{Cl} \end{aligned}$	18 Ar
19	$\begin{array}{\|l} \hline 20 \\ \hline \mathrm{Ca} \end{array}$	$\begin{array}{\|l\|} \hline 21 \\ \mathrm{Sc} \end{array}$	$\frac{22}{T i}$	$\left\lvert\, \begin{aligned} & 23 \\ & \mathrm{~V} \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 24 \\ \mathrm{Cr} \end{array}$	$\begin{array}{\|l\|l\|} \hline 25 \\ \mathrm{Mn} \end{array}$	$\begin{array}{\|l\|} \hline 26 \\ \mathrm{Fe} \end{array}$	$\begin{array}{\|l\|} \hline 27 \\ \mathrm{Co} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 28 \\ \mathrm{Ni} \end{array}$	$\begin{array}{\|c\|} \hline 29 \\ \mathrm{Cu} \end{array}$	$\left\lvert\, \begin{aligned} & 30 \\ & \text { Zn } \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 31 \\ \mathrm{Ga} \\ \hline \end{array}$	$\begin{aligned} & 32 \\ & \mathrm{Ge} \end{aligned}$	$\begin{array}{\|l\|} \hline 33 \\ \text { As } \end{array}$	$\begin{aligned} & 34 \\ & \hline 3 \mathrm{Se} \end{aligned}$	$\begin{aligned} & \hline 35 \\ & \hline \mathrm{Br} \end{aligned}$	36 Kr
37 Rb	$\begin{aligned} & \hline 38 \\ & \text { Sr } \end{aligned}$	$\begin{gathered} 39 \\ Y \end{gathered}$	$\begin{aligned} & 40 \\ & \mathrm{Zr} \end{aligned}$	$\begin{aligned} & 41 \\ & \mathrm{Nb} \\ & \hline \end{aligned}$	$\begin{aligned} & 42 \\ & \hline \text { Mo } \end{aligned}$	$\begin{aligned} & 43 \\ & \mathrm{TC} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 44 \\ \mathrm{Ru} \end{array}$	$\begin{aligned} & 45 \\ & \mathrm{Rh} \end{aligned}$	$\begin{aligned} & \hline 46 \\ & \mathrm{Pd} \end{aligned}$	$\begin{array}{\|l\|} \hline 47 \\ \mathrm{Ag} \\ \hline \end{array}$	$\begin{aligned} & 48 \\ & \mathrm{Cd} \end{aligned}$	$\begin{aligned} & \hline 49 \\ & \text { in } \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & \hline n \end{aligned}$	$\begin{aligned} & 51 \\ & \mathrm{Sb} \end{aligned}$	$\begin{aligned} & \hline 52 \\ & \mathrm{Te} \end{aligned}$	$\begin{gathered} 53 \\ 1 \end{gathered}$	54 $\times \mathrm{e}$
$6 \begin{array}{\|c\|} \hline 55 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 56 \\ \mathrm{Ba} \end{array}$		$\begin{gathered} 72 \\ \mathrm{Hf} \end{gathered}$	$\begin{aligned} & 73 \\ & \mathrm{Ta} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 74 \\ W \end{array}$	$\begin{array}{\|l\|} \hline 75 \\ \mathrm{Re} \end{array}$	$\begin{array}{\|l} \hline 76 \\ \text { Os } \end{array}$	$\begin{aligned} & 777 \\ & 1 r \end{aligned}$	$\begin{array}{\|c\|} \hline 78 \\ \mathrm{Pt} \end{array}$	$\begin{array}{\|l\|} \hline 79 \\ \mathrm{Au} \end{array}$	$\begin{array}{\|l\|} \hline 80 \\ \mathrm{Hg} \end{array}$	$\begin{aligned} & 81 \\ & \mathrm{TI} \end{aligned}$	$\begin{aligned} & 82 \\ & \mathrm{~Pb} \end{aligned}$	$\begin{array}{\|l\|} \hline 83 \\ \mathrm{Bi} \\ \hline \end{array}$	$\begin{aligned} & \hline 84 \\ & \mathrm{Po} \end{aligned}$	$\begin{aligned} & \hline 85 \\ & \text { At } \end{aligned}$	86 Rn
$\begin{array}{l\|l\|} \hline 8 \\ \hline 8 \\ \hline 87 \\ \hline \end{array}$	$\begin{aligned} & 88 \\ & \mathrm{Ra} \end{aligned}$		$\begin{array}{\|c\|} \hline 104 \\ \mathrm{Rf} \\ \hline \end{array}$	$\begin{aligned} & 105 \\ & \mathrm{Db} \end{aligned}$	$\begin{gathered} 106 \\ \hline \mathrm{Sg} \\ \hline \end{gathered}$	$\begin{gathered} 107 \\ \mathrm{Bh} \end{gathered}$	$\begin{gathered} 108 \\ \mathrm{Hs} \end{gathered}$	$\begin{gathered} 109 \\ \mathrm{Mt} \end{gathered}$	$\begin{gathered} 110 \\ \mathrm{Ds} \end{gathered}$	$\begin{array}{\|c\|} \hline 111 \\ \mathrm{Rg} \\ \hline \end{array}$	$\begin{gathered} 112 \\ \mathrm{Cn} \end{gathered}$	$\begin{array}{\|l\|} \hline 113 \\ \text { Uut } \\ \hline \end{array}$	$\begin{gathered} 114 \\ \mathrm{FI} \end{gathered}$	$\begin{array}{\|l\|} 115 \\ \text { Uup } \end{array}$	$\begin{gathered} 116 \\ L^{2} \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline 117 \\ \text { Uus } \end{array}$	118 UuO
Lanthanides		$\begin{array}{\|l\|} \hline 57 \\ \text { La } \end{array}$	$\begin{array}{\|l\|l\|} \hline 58 \\ \mathrm{Ce} \\ \hline \end{array}$	$\begin{array}{\|l\|} 59 \\ \mathrm{Pr} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 60 \\ \mathrm{Nd} \end{array}$	$\begin{array}{\|l\|} \hline 61 \\ \mathrm{Pm} \end{array}$	$\begin{array}{\|l\|} \hline 62 \\ \mathrm{Sm} \end{array}$	$\begin{array}{\|l\|} \hline 63 \\ \text { Eu } \end{array}$	$\begin{array}{\|l\|} \hline 64 \\ \mathrm{Gd} \\ \hline \end{array}$	$\begin{aligned} & 65 \\ & \hline \mathrm{~Tb} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 66 \\ \text { Dy } \end{array}$	$\begin{aligned} & 67 \\ & \mathrm{HO} \end{aligned}$	$\begin{aligned} & 68 \\ & E r \end{aligned}$	$\begin{array}{\|l\|} \hline 69 \\ \mathrm{Tm} \\ \hline \end{array}$	$\begin{aligned} & 70 \\ & \mathrm{Yb} \end{aligned}$	$\begin{aligned} & 71 \\ & \mathrm{Lu} \end{aligned}$	
Actinides		89 Ac	$\begin{aligned} & 90 \\ & \hline \mathrm{Th} \end{aligned}$	91 Pa	$\stackrel{92}{4}$	$\begin{aligned} & 93 \\ & \text { Np } \end{aligned}$	94 Pu	$\begin{aligned} & 95 \\ & \mathrm{Am} \end{aligned}$	$\begin{aligned} & 96 \\ & \mathrm{Cm} \end{aligned}$	$\begin{aligned} & 97 \\ & \mathrm{BK} \end{aligned}$	$\begin{aligned} & 98 \\ & \mathrm{Cf} \end{aligned}$	$\begin{array}{\|c\|} \hline 99 \\ \text { Es } \end{array}$	$\begin{aligned} & 100 \\ & \mathrm{Fm} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & 101 \\ & \mathrm{Md} \end{aligned}\right.$	$\stackrel{102}{102}$	$\begin{gathered} 103 \\ \mathrm{Lr} \end{gathered}$	

Changing States of Matter

Use the words in the box to fill in the blanks below.
0° cool heat 100° freeze melt 32° condense evaporate 212°

Physics/Chemistry Levels 5-8

Experiment Worksheet
Fill out this worksheet as you work through the experiment.
Question: \qquad
Hypothesis: \qquad
\qquad
Materials: \qquad
\qquad
Procedure: \qquad
\qquad
\qquad
\qquad
\qquad
Observations/data: \qquad
\qquad
\qquad
\qquad
\qquad
Conclusion: \qquad
\qquad
\qquad

Lesson

Define these terms. atom
\qquad molecule
\qquad matter \qquad
\qquad
state of matter
\qquad
liquid
gas
\qquad
solid
periodic table

Fill out this worksheet as you work through the experiment.
Question: \qquad
Hypothesis: \qquad
\qquad
Materials: \qquad
\qquad
Procedure: \qquad
\qquad
\qquad
\qquad
\qquad
Observations/data: \qquad
\qquad
\qquad
\qquad
\qquad
Conclusion: \qquad
\qquad
\qquad

Matter

Use this notebooking page as you watch the video to write down any new vocabulary words and to take general notes on the content of the video. Then label the atom at the bottom.
\qquad
\qquad
\qquad
\qquad
\qquad

Fill in this chart for helium.

Atoms
Draw 6 protons in the nucleus of the atom and label them with their charge.
Draw 6 neutrons in the nucleus of the atom.
Draw 2 electrons on the inner ring and label them with their charge.

Draw 4 electrons in the outer ring and label them with their charge.

What is the atom?

Fill in the missing information from the chart.

Element	Atomic Mass	Atomic Number	Protons	Neutrons	Electrons
Be	9	4			
N	14				7
Mn		25	25	30	
Au	197				79
Cr		24		28	
H	1		1		

Electrons

Fill out how many protons, neutrons, and electrons each atom has using the information given. Then draw the electrons in each shell, remembering that the first shell can hold 2 electrons, the second can hold 8 electrons, and the third can hold 18 electrons. Finally, answer the questions at the bottom.

Atomic No: 2 Mass No: 4 Protons:
Neutrons:
Electrons:

Atomic No: 10 Mass No: 20 Protons: Neutrons: Electrons:

Atomic No: 1
Mass No: 1
Protons:
Neutrons:
Electrons:

Atomic No: 11
Mass No: 23
Protons:
Neutrons:
Electrons:

Atomic No: 9 Mass No: 19 Protons:
Neutrons: Electrons:

Which elements would be most likely to lose electrons in a chemical bond? \qquad
Which elements would be most likely to gain electrons in a chemical bond? \qquad

Physics/Chemistry Levels 5-8

Use this notebooking page to explain why a cup of water that's too full doesn' \dagger spill over immediately.

Physics/Chemistry Levels 5-8

Use this notebooking page to describe the chemical reaction from the experiment.
\qquad
\qquad
\qquad
\qquad

Physics/Chemistry Levels 5-8

几 \triangle 几 \triangle
 Principles of Flight

Use this notebooking page to take notes.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The surface gravity of each planet relative to earth is in its box. Find out your weight on other planets by writing your weight on earth on the line and multiplying it by the surface gravity of the planet.

Physics/Chemistry Levels 5-8

Use this notebooking page to explain how weight, mass, and gravity are connected.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fill out this worksheet as you work through the experiment.
Question: \qquad
Hypothesis: \qquad
\qquad
Materials: \qquad
\qquad
Procedure: \qquad
\qquad
\qquad
\qquad
\qquad
Observations/data: \qquad
\qquad
\qquad
\qquad
\qquad
Conclusion: \qquad
\qquad
\qquad

Physics/Chemistry Levels 5-8

Use this sheet to record your findings.
Objective: to find out if liquids are acid, neutral, or base

Testing	Color	Conclusion
Vinegar	pink	

Answer the following questions about acids and bases.

What is a characteristic of an acid? \qquad

What is a characteristic of a base? \qquad

List some acids: \qquad

List some bases: \qquad

What is the pH of a strong acid? \qquad

What color does a strong acid turn when tested for its pH level? \qquad

What is the pH of a strong base? \qquad

What color does a strong base turn when tested for its pH level? \qquad

What atom is abundantly present in an acid?

What molecule is abundantly present in a base?

Chemical Reactions
Fill in the blanks as you watch the video.

1. A chemical reaction is the process of one or more substances
\qquad to form new substances with different properties.
2. In chemical reactions, a new substance is formed from chemicals with each other.
3. \qquad are substances that enter a chemical reaction, while \qquad are substances that are produced by a chemical reaction.
4. A chemical \qquad is an expression using chemical symbols to represent a chemical reaction.
5. A plus sign is used to show that substances \qquad .
6. An \qquad is used to show products yielded by reactants.
7. Label the reactants and the products in this chemical equation:

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

8. The law of the \qquad of mass says that mass cannot be gained or lost in a chemical reaction.
9. The number of \qquad of each element must be the same before and after a chemical reaction.
10. A \qquad reaction is where two or more simple substances combine to form a more complex substance.

Chemical Reactions cont.

11. A \qquad reaction is where a substance breaks down into two or more simple substances.
12. A \qquad - \qquad reaction is where atoms of one element replace atoms of another element in a compound.
13. A \qquad - \qquad reaction is where atoms in two different compounds trade places with each other.
14. Chemical reactions involve \qquad being given off or being absorbed.
15. An \qquad reaction releases energy and gives off heat.
16. An \qquad reaction absorbs energy resulting in the lowering of temperature.
17. Variables such as temperature, surface area, and concentration affect the \qquad of chemical reactions, or the speed with which reactants turn into products.
18. The \qquad is the amount of material that comes in contact with other reactants.
19. \qquad is the amount of substance in a given unit of volume.
20. A \qquad is a substance that increases the reaction rate but is not changed by the reaction.

Fill out this worksheet as you work through the experiment.
Question: \qquad
Hypothesis: \qquad
\qquad
Materials: \qquad
\qquad
Procedure: \qquad
\qquad
\qquad
\qquad
\qquad
Observations/data: \qquad
\qquad
\qquad
\qquad
\qquad
Conclusion: \qquad
\qquad
\qquad

Answer the questions about density. You can use a calculator. Remember that Density $=$ Mass $/$ Volume. You can reverse that to be $V=M / D$ and $M=D^{*} V$.

1. A container has a capacity of 1400 milliliters. If the density of ethanol is $.789 \mathrm{~g} / \mathrm{mL}$, what mass of ether can the bottle hold?
2. 200 grams of a liquid fills a 400 mL container. What is the density of the liquid?
3. If a block of iron measures $1 \mathrm{~cm} \times 2 \mathrm{~cm} \times 3 \mathrm{~cm}$ and weighs 47.16 grams, what is its density?
4. The density of mercury is $13.6 \mathrm{~g} / \mathrm{mL}$. What is the mass of 10 mL of mercury?
5. If a solution has a density of $2.5 \mathrm{~g} / \mathrm{mL}$, how many grams are needed to obtain 10 mL of solution?
6. A piece of silver has a mass of 3360 grams and occupies a volume of $320 \mathrm{~cm}^{3}$. What is the silver's density?

Physics/Chemistry Levels 5-8

Define these terms.
Viscosity: \qquad
\qquad
\qquad
\qquad

Density: \qquad
\qquad
\qquad
\qquad

Buoyancy: \qquad
\qquad
\qquad
\qquad

Capillary Action: \qquad
\qquad
\qquad
\qquad

Use these sheets to conduct your endothermic and exothermic experiments.

Endothermic Reaction Procedure:

1. Measure 10 ml of vinegar and pour it into a clear container.
2. Place a thermometer in the container. Measure and record the temperature of the vinegar on the chart.
3. Leaving the thermometer in the cup, add $1 / 2$ teaspoon of baking soda.
4. Watch the thermometer and observe the changes in temperature. When the thermometer stops moving, record the temperature on the chart.

Temperature

Vinegar without baking soda	
Vinegar with baking soda	
Total change in temperature	
Increase or decrease?	

Exothermic Reaction

Exothermic Reaction Procedure:

1. Measure 10 ml of baking soda solution and pour it into a clear container.
2. Place a thermometer in the container. Measure and record the temperature of the baking soda on the chart.
3. Leaving the thermometer in the cup, add $1 / 2$ teaspoon of calcium chloride.
4. Watch the thermometer and observe the changes in temperature. When the thermometer stops moving, record the temperature on the chart.
5. Now add another $5^{\circ} \mathrm{C}$ or $10^{\circ} \mathrm{F}$ to the temperature you achieved. This is your target temperature for your next three trials. Fill it in on the chart in all three columns.
6. Try changing the amount of baking soda solution or calcium chloride in each trial to reach the target temperature.

Trials	As written	$1^{\text {st }}$ Trial	$2^{\text {nd }}$ Trial	$3^{\text {rd }}$ Trial
Baking soda solution	10 ml			
Initial temperature				
Calcium chloride	$1 / 2$ tsp			
Final temperature				
Target temperature				
Difference between final and target temperature				

Physics/Chemistry Levels 5-8

Lesson

Fill out this worksheet as you work through the experiment.
Question: \qquad
Hypothesis: \qquad
\qquad
Materials: \qquad
\qquad
Procedure: \qquad
\qquad
\qquad
\qquad
\qquad
Observations/data: \qquad
\qquad
\qquad
\qquad
\qquad
Conclusion: \qquad
\qquad
\qquad

Lesson 78
Electricity Timeline
Use the blanks to fill in a timeline of electricity events you want to remember. Be sure to include the year.

Circuits

Write any notes about circuits from your assignments today.

Explain an open circuit.
Draw an example.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Static Electricity

Do the following experiment and take notes on what happens and why.
Materials: two balloons, two 3-foot pieces of string, tape.
Procedure: Blow up the balloons and tie the strings to the ends. Hang them beside each other in a doorway so that they are close but not touching each other. From their hanging position, rub each balloon on your hair and then let go. Record what happens.
\qquad
\qquad
\qquad

The balloons should have pushed away from each other. Why did that happen? The balloons became similarly charged. What do you know about like charges?
\qquad
\qquad
\qquad
\qquad

Magnets
What are magnets?
\qquad
\qquad
\qquad

What have you learned about magnets? Make notes here.
\qquad
\qquad
\qquad

Physics/Chemistry

What is the difference between $A C$ and $D C$ power? Fill in what each letter stands for and then explain what the difference is.

A
C
D
C
\qquad
\qquad
\qquad
\qquad

几 \triangle 几 \triangle
 GFCI Outlet

What is a GFCl outlet? What do the letters stand for?

G

F

C
I

What are benefits of GFCI outlets? Where are they used?

Physics/Chemistry Levels 5-8

$$
\begin{gathered}
\triangle \triangle \triangle \\
\text { Vocabulary }
\end{gathered}
$$

Define these terms.

Physics/Chemistry Levels 5-8

Fill out this worksheet as you work through the experiment.
Question: \qquad
Hypothesis: \qquad
\qquad
Materials: \qquad
\qquad
Procedure: \qquad
\qquad
\qquad
\qquad
\qquad
Observations/data: \qquad
\qquad
\qquad
\qquad
\qquad
Conclusion: \qquad
\qquad
\qquad

Lesson

Define these terms.
AC
domain \qquad
\qquad
electromagnet
\qquad
electron \qquad
\qquad
geographic pole
magnetic field

Electromagnets

Answers these questions about electromagnets.

An electromagnet runs on \qquad .

The strength of an electromagnet can / cannot be changed.

In an electromagnet, electric current produces a \qquad

The magnetic field of an electromagnet can be strengthened by wrapping this around a core. \qquad .

As the current in an electromagnet strengthens, the magnetic field gets stronger / weaker.

An electric current flowing towards you will create a magnetic field that will circulate clockwise / counter-clockwise.

Draw a gripper in action. Explain what's happening in your picture.

Physics/Chemistry Levels 5-8

Electricity Conductors
Use this sheet to record your findings.
Objective: to find out if objects conduct or carry electricity.

Testing	Conductor	Not Conductor
water	x	

Define these terms as you work through lessons 96-99.
Lesson 96:
physical change
ionic bond
\qquad
solubility

Lesson 97:
solute
\qquad
solvent

Lesson 98:
chemical reactions
(continued on next page)

Lesson

Lesson 98 continued: concentrations \qquad

Lesson 99:
freezing
\qquad
heat
\qquad
evaporation
\qquad condensation
temperature

 lonic Bonds

 lonic Bonds}

Write a short description beside each picture to show the process of ionic bonding. The first one is done for you.

Sodium

Chlorine

Sodium ion

Choloride ion

Sodium Choloride (NaCl)

Answer the following questions about Lewis dot diagrams.

Compare the energy level diagrams to the Lewis dot diagrams.

What do you notice about the dots in each diagram? \qquad
\qquad

Why are the number of dots associated with hydrogen and helium the same on each type of diagram? \qquad

Compare the energy level diagram for a covalent bond in the hydrogen molecule H_{2} with the Lewis dot diagram of the same bond.

$\mathrm{H}: \mathrm{H}$ $\mathrm{H}-\mathrm{H}$

What do the two dots represent between the Hs? \qquad
What do the two lines represent? \qquad

Draw a Lewis dot diagram for the covalent bond of two hydrogen atoms to one oxygen atom in a water molecule. Use dots in the first diagram and lines in the second.

Force

For the following pictures, tell whether the force at work is a push or a pull.

Circle the answer that fits with each picture.

The forces shown are \qquad forces. pushing pulling
pushing pulling
The forces shown are \qquad .
working together opposite
The forces are \qquad .
equal not equal equal not equal

The forces \qquad balance each other.
do
do not
do do not

The resultant force is \qquad .
100 n left 100 n right zero 100 n left 100 n right zero
There \qquad motion.
is is not

Force

Sometimes force is shown as a vector. The dot shows where the force begins. The length shows the amount of force. The arrow shows the direction of the force. This vector shows a force of $3 n$ to the right.

Fill in the chart with the information about the vectors below. Each square is 1 n .

				2					Force	Direction
								1		
							3	2		
								3		
		\downarrow	,		$\xrightarrow{4}$			4		
5								5		

Draw the following vectors on the grid below. 1) 7 n right; 2) 3 n up; 3) 4 n down; 4) 6 n left ; 5) 1 n down.

Here are two more examples of vectors showing force. The first chart shows two forces acting in opposite directions. One force is 5 n to the left. One force is 3 n to the right. The resultant force is 2 n to the left as shown.

							T		,			
						resultant						

The second chart shows two forces acting in the same direction. One force is 1 n to the right. One force is 4 n to the right. The resultant force is 5 n to the right as shown.

Draw the resultant vector for each set of vectors below. Then fill in the chart for each set. The first one is done for you.

	Original forces	Resultant force
1	1 n right, 2 n right	3 n right
2		
3		
4		
5		

Physics/Chemistry Levels 5-8

Lesson

Write about Newton's three Laws of Motion.

\qquad
\qquad
$2^{\text {nd }}$ Law:
Acceleration
$3^{\text {rd }}$ Law:
Action/Reaction

Newton's Laws of Motion

Write about your demonstration of each law on the lines.

\qquad
$2^{\text {nd }}$ Law: Acceleration
The acceleration of an object is directly related to the force applied and inversely related to the object's mass ($F=M A$).

$3^{\text {rd }}$ Law: Action/Reaction

For every action there is an equal and opposite reaction.

Fill in the definition for each word, draw a picture of it, and tell what it reminds you of.

Definition

Reminds me of
\qquad

Definition \qquad

Definition

Reminds me of \qquad

Definition \qquad

Newton's Laws of Motion

For each given scenario, write in the blank whether it illustrates Newton's first, second, or third Law of Motion.

```
1 st Law: Inertia 2 2 nd Law: Acceleration 3 3 'rd Law: Action/Reaction
```

My family went on a vacation. We strapped our luggage to the top of the van. One suitcase apparently wasn't under the strap, and the first time my dad hit the brakes hard, the suitcase went flying forward and spilled clothes all over the highway!

A bird was flapping his wings. Each time it pushed its wings down, the bird would go up higher in the air.

William was riding a high speed roller coaster that took a banked turn to the right, and he ended up with a bruise on his left shoulder.

My brother was lifting a box labeled "books." He didn't know my mom had already emptied the box, so he heaved on it, and it went flying through the air. We all had a good laugh.

Jaylen was rowing a canoe. Every time she pushed the oar backward, the boat would propel forward.

Connor was playing baseball in his yard. He noticed that no matter how hard he swung, he couldn't hit the real baseball as far as he could hit the foam one.

Use this page to draw examples of these simple machines as they are assigned．

Fill out this worksheet as you work through the experiment.
Question: \qquad
Hypothesis: \qquad
\qquad
Materials: \qquad
\qquad
Procedure: \qquad
\qquad
\qquad
\qquad
\qquad
Observations/data: \qquad
\qquad
\qquad
\qquad
\qquad
Conclusion: \qquad
\qquad
\qquad

Element Go Fish

Carefully tear out these pages and cut out the cards（there are 3 sets of 18 cards）． Use them to play a game of element＂Go Fish．＂Ask any information on the card to learn more about the elements as you play．You need 3 cards for a set．

Ne 10	Na 11	Mg 12
Neon	Sodium	Magnesium
QPEN	Salt	
- Used in lights, lasers - Never bonds to other	Bonds with chlorine to make table salt	- Necessary for plants and animals
Al 13	Si 14	
Aluminum	Silicon	Phosphorus
- Used in airplanes for its I weight and strength	Found in sand, stone, and soil	Used in mat detergents, fe
flur	Chlorine	Argon
		- Found in light bubs
Creates giir pollutio	-Usedinswimming pools	with any other element

(continued on next page)

(continued on next page)

Fill out this worksheet as you work through the experiment.
Question: \qquad
Hypothesis: \qquad
\qquad
Materials: \qquad
\qquad
Procedure: \qquad
\qquad
\qquad
\qquad
\qquad
Observations/data: \qquad
\qquad
\qquad
\qquad
\qquad
Conclusion: \qquad
\qquad
\qquad

Use these pages to make notes on your topic.
Topic: \qquad
Resource 1:

Info: \qquad
Info: \qquad
Info: \qquad Info: \qquad
Resource 2:
Info: \qquad Info:
Info:
Info: \qquad
Resource 3:
Info: \qquad Info:
Info:
Info: \qquad
Resource 4:
Info: \qquad
Info: \qquad Info:
Info: \qquad

Physics/Chemistry
Resource 5:
Info: \qquad
Info: \qquad
Info: \qquad
Resource 6:
Info: \qquad
Info: \qquad
Info: \qquad Info: \qquad
Resource 7:
Info: \qquad Info:
Info: \qquad
Info: \qquad
Resource 8:
Info: \qquad Info:
Info: \qquad Info: \qquad
Info: \qquad Info: \qquad
Resource 9:
Info: \qquad Info:
Info: \qquad
Info: \qquad

Science Report Checklist

Use this checklist to help you as you finish up your science project. Aim for a checkmark in each box.

Research

\square Facts
Sources
\square Bibliography

Project

\square 3D
\square Neat
\square Teaches all about your topic; shows off all you learned
\square Self-explanatory: someone could look at it and understand what it's all about without you explaining it to them
\square Bibliography displayed with project

Experiment

\square Demonstrates your topic
\square Neatly written up with all parts of the experiment worksheet
\square Able to be done over and over with the same results

Demonstration

\square Clearly state what your project is about
\square Tell about what they will learn from your project
\square Explain how the experiment relates to your topic
Demonstrate the experiment
State your conclusion
\square Ask if anyone has questions

